Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction.
نویسندگان
چکیده
Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.
منابع مشابه
Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes.
Water dynamics inside of reverse micelles made from the surfactant Aerosol-OT (AOT) were investigated by observing spectral diffusion, orientational relaxation, and population relaxation using two-dimensional infrared (2D IR) vibrational echo spectroscopy and pump-probe experiments. The water pool sizes of the reverse micelles studied ranged in size from 5.8 to 1.7 nm in diameter. It is found t...
متن کاملMyoglobin-CO conformational substate dynamics: 2D vibrational echoes and MD simulations.
Two-dimensional (2D) infrared vibrational echoes were performed on horse heart carbonmonoxymyoglobin (MbCO) in water over a range of temperatures. The A(1) and A(3) conformational substates of MbCO are found to have different dephasing rates with different temperature dependences. A frequency-frequency correlation function derived from molecular dynamics simulations on MbCO at 298 K is used to ...
متن کاملDynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
The dynamics of water in nanoscopic pools 1.7-4.0 nm in diameter in AOT reverse micelles were studied with ultrafast infrared spectrally resolved stimulated vibrational echo and pump-probe spectroscopies. The experiments were conducted on the OD hydroxyl stretch of low-concentration HOD in the H2O, providing a direct examination of the hydrogen-bond network dynamics. Pump-probe experiments show...
متن کاملWater dynamics in large and small reverse micelles: from two ensembles to collective behavior.
The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two ensembles: slow interfacial water and bulklike core water. As the reverse micelle size decreases, the slowing effect of the interface and the collective nature of water reorientation begin to s...
متن کاملVibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution.
Two-dimensional infrared spectroscopy is capable of following the transfer of vibrational energy between modes in real time. We develop a method to include vibrational relaxation in simulations of two-dimensional infrared spectra at finite temperature. The method takes into account the correlated fluctuations that occur in the frequencies of the vibrational states and in the coupling between th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 134 5 شماره
صفحات -
تاریخ انتشار 2011